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Abstract. The liquid-expanded (LE)}-liquid-condensed {LC) phase transition in monolayers of
amphiphilic molecules is investigated in the pair approximation of the cluster vatiation method.
The model analysed is the model proposed by Firpo er a/ which can be mapped into the Blume--
Emery-Griffiths Hamiltonian. The signatures of the LE-LC transition are searched for as break
points on the isotherms of the surface pressure—molecular area diagram. The results obtained
in the pair approximation are improved with respect to those obtained in the Bragg-Williams
approximation for a set of typical energy and entropy parameters in the case of pentadecanoic
acid. In particular, the LE-LC phase transition is shown to be weakly first order. A comparison
with experimentat results gives satisfactory agreement.

1. Introduction

The so-called liguid-expanded (LE)-liquid-condensed (LC) phase transition is one of several
phase transitions occurring in monolayers of simple amphiphilic molecules at the air—water
interface. The origin of these monomolecular layers can be easily understood by considering
that the elongated molecules generally present a hydrophobic end (a hydrocarbon chain) and
a hydrophilic end (an acid or alcohol radical, for example). The most common experimental
study of these phases is carried out by investigating the surface pressure-mofecular area
isotherm. The signature of the phase transition is a break point on the isotherm. Much
experimental work has been done on these systems [1], but the nature of the LE-LC transition
has been a long-standing controversy. Indeed the isotherm does not exhibit a plateau which
is as clearly horizontal as that of the gas-liquid transition. A number of experimental factors
can influence the results, preventing simple interpretation [2]. First, some experimental data
suggested a second-order transition {3]. Subsequent measurements performed on carefully
purified amphiphilics indicate that the transition is first order [4]. These results are reinforced
by the conventional surface potential method [5], optical second-harmonic generation studies
{6], fluorescence microscopy [2,7,8] and electron microscopy [9]. A variety of techniques
have been used to analyse these systems. Their viscoelastic behaviour has been investigated
by means of light-scattering experiments [10}. Infrared-visible sum-frequency vibrational
spectroscopy has been employed to monitor the molecular orientation at different surface
densities [11]. The structural properties and elasticity of amphiphilic monolayers have been
analysed using x-ray reflectivity [8, 12].

On the theoretical side, some models have been proposed in order to describe this
interesting phenomenon. A review of the first theoretical conftributions has been given
in [13]. Recently some new theoretical efforts have been made to describe amphiphilic
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monolayers [14-17]. In this paper we refer to a model proposed some years ago by Firpo,
Legre, Bois and Baret (FLBB) {18] which accounts for many of the fundamental properties of
these systems. The model was firstly studied in the Bragg—-Williams approximation, giving
a safisfactory qualitative description. The break points on the isotherms, as calculated
in that approximation, were in fair agreement with many experimental measurements,
and the transition was obtained as second order. Subsequently, Legre et af [19], after
mapping the FLBB model into a spin-1 Blume-Emery-Griffiths (BEG) model [20], have
investigated the properties of the system with a Migdal-Kadanoff approximate position-
space renormalization group. They have obtained the LE-LC transition, without finding
the break points on the isotherms. The difference was atiributed to long-range atfractive
interactions nct considered in the model, which are implicit in the mean-field treatments of
two-dimensional systems [19]. Subsequently, Legre et al [21] have studied the same model
by introducing stresses of mean-field type in the Migdal-Kadanoff decimation procedure,
obtaining the compressibility jump.

In this paper we analyse the FLBB model in the pair approximation of the cluster variation
method (cvM) [22,23]. Particular attention is devoted to the study of the isotherms, and
to the localization of the break points. The CVM is generally very accurate in determining
the critical parameters of systems. Iis application to this amphiphilic system is particularly
purposeftl owing to two important characteristics of the method. First, since the CvM is a
generalization of the mean-field approximation, it is certainly interesting to investigate the
behaviour of the system with a slightly complex but more accurate approximation such as
the pair approximation, where some correlations are taken into account. This enables one to
verify better whether the model has the features peculiar to describing the LE-LC transition
and implicitly to include long-range atiractive interactions between unshielded molecular
dipoles not considered in it. It should be remembered that in the case of 1/r3 attractive
interactions the marginal dimension for which Landau theory applies is two [24]. Second,
the formulation of the CVM that we apply is particularly convenient for analysing the pressure
dependence of the order parameters, thus leading to a natural investigation of the order of
the transition. The CVM is well suited to studying first-order transitions (in which, starting
from the disordered phase, the transition occurs before the fluctuations have increased too
much} [25] and our calculations indicate that the LE-LC phase transition is weakly first order.
Moreover our approach gives results in better agreement with experimental data.

The paper is organized as follows. In section 2 we present the model by reviewing the
main steps in its original construction and we show how It is related to the BEG model.
‘We also discuss the choice of a suitable ensemble to be used in the CvM approach. In
section 3 we develop the free-energy calculation in the CvM approach and the necessary
tools to draw isotherms. In section 4 we present the isotherms and the main results of our
calculations and we make comparisons with experiments. Finally, in section 5 we make
some conclusive remarks.

2. The model

Let us begin with short review of the model. It is a lattice three-state (spin-1) model to
account for the basic properties of monolayers of simple amphiphilic molecules (having a
single polar group and a single hydrocarbon chain) near the LE-LC transition. These states
simulate the molecular states (of different helicities) corresponding to a chain with a kink
in the plus state (+1) and to a chain with a kink in the minus state (—1). These kinks
are intrachain defects in the configuration gauche(-+)—trans—gauche(—} in the plus state and
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gauche(—=)—rans-gauche(+) in the minus state. Associated with these molecular states are
the number operators N, and N_. The vacancies are the third state (0), with the associated
number operator Np. In 2 lattice spin-1 system these states correspond to the eigenvalues
5; = +1 (plus state), O (vacancies), —1 (minus state) of the z component of a spin-i
operator at the lattice site i. Let us introduce the cccupation-number operators at site i, as
is usval in a lattice gas approach, as the Kronecker deltas §(5;,1) = %(SI? + ;) for a plus
state, 8(S;, —1) = 3(5% — ;) for a minus state, and 5(S;, 0) = 1 — S? for a vacancy. From
these quantities we can form the following number operators for the pairs of molecules (at
nearest-neighbour sites):

Nyt = Zr?(Si, DS, 1 2.1
$ijy

N__ = 8(8,—1)8(s;, ~1) (2.2)
(i)

Ne—+N_p = 3 _[8(5:, D3(S;, —1) + 8(S:, —1)3(S;, D]. (2.3)

n

Moreover we have

N N
N =Ny +No=) [5(8, 1)+, -] =) S (2.4)

i=l i=l

Nf
No = Ea(s,-,()) =N =N 2.5)

i=1

where N is the number of molecules, N’ is the number of lattice sites and {ij} indicates
summation of the nearest neighbours. The FLBB Hamiltonian of the system is {18]

H = —[0/(Nyy + Noe + Ney + N_2) — AN+ N+ AEN. + M) (26)

where || denotes the attractive interaction emergy between nearest-neighbour molecules,
|Aw| is an additional attractive interaction energy to be associated with those nearest-
neighbour molecules in the same state which partially overlap, giving a decrease in area per
molecule, AE is the excitation energy of the kink in the (+1) and (—1) states, and Nf_}_
and N9 are the numbers of -++ and —— nested pairs, respectively.

An intrachain entropy AS; can be associated with the molecular states (+1) and (—1),
whose defect is free to move along the chain:

AS, = AS[(N; + N_) — (N9} + N9)) @7

where AS is the internal entropy for (4-1) and {—1) states and « is a positive coefficient
which describes phenomenoclogically the entropy lost from a nested pair of molecules in the
same state. Moreover the total area of the monolayer can be written as

A = 204(N,, + N_) + vopNg — oo(N) + N9y (2.8)

where the first term is the area of the states (41) and (—1) (209 is the area of an isolated
molecule), the second term is the vacancy area (v is an adjustable parameter) and the
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third term accounts for the area reduction due to packing of the kinks. Denoting by IT

the surface pressure and by 7 the absolute temperature, we consider the thermodynamic
potential [18,19]

Hy=H-TAS +TIA 2.9

which, utilizing (2.1)~(2.5), can be written in the form of the spin-1 BEG Hamiltonian [20]

Nl’
Hy=-JY $8-KY S'S2+ DY St+MN'. (2.10)
i} in i

In (2.10) the following quantities have been introduced:

J =(|Aw|+ Moy —aT AS)/z K=7+|w

(2.11)
D=MNoy(@2—v)}+ AE—-TAS M =vllog

z denoting the lattice coordination number. Moreover the assumption N.(Jl + N9 =
(2/2)(Nyy 4 N__) has been made [18]. The chemical potential 1 is then given by

p= G={(Hy)—-TS (2.12)
where G is the Gibbs free energy, the symbo] { ) means ensemble average and S denotes
the entropy of the system (without the intrachain eniropy included in {Hy}). The ensemble
considered in (2.12) is the “T-T1-N’ ensemble. Taking into account that, according to (2.10),
Hpy has been expressed as a spin-1 Hamiltonian characterized by the dynamical variables S,
(i = 1...N’) obeying relation (2.4), it is more convenient to utilize an ensemble ‘T-IT-u’
in which the number N” of lattice sites is fixed and not the number N of molecules [19].

This is possible in view of the thermodynamic limit. In this context we introduce the ‘free
energy’

V=G — pu{N) N = (N} (2.13)
and, according to (2.12), the equation of state of the system is
W(T, I, u) =0. (2.14)

From (2.12), (2.13) and (2.4) we can write
Nl
U=(H")-TS H'=Hy-p) S (2.15)
i=1

and H* is again a BEG Hamiltonian. The problem is now reduced to the determination of
the ‘free energy’ W associated with the spin-1 ‘Hamiltonian® H*, With this aim we shall
utilize the CVM in the pair approximation.
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3. The cluster variation approach

The CVM is based on an approximate expression of the entropy of the system as a sum of
suitably weighted cluster entropies relative to a set I' of maximal clusters and of all their
subclusters [23]:

S=Y 8aNaSe  Sp= —ksTt(pelnpa). (3.1)

acl

In (3.1} N, is the total number of clusters of the o kind and a, is a counting factor, which
is easily calculated using the Moebius function [23]. S, is the entropy associated with the
cluster & and p, is the reduced density matrix for the cluster or, which has to be determined
by the minimum-free-energy requirement subject to the constraints

Trpe =1 P = Try\g Po w > o (3.2)

(Try\e means the partial trace.)
In the pair approximation adopted here, the maximal cluster is a nearest-neighbour pair
and the free energy f per site can be expressed as [26]

v (5
f=N="w%

+kpT 52 Tr(op In pp) + (1 — 2) Tr(p, In p5)] (3.3)

where p; and p, denote the site and pair density matrices, respectively, and kg is the
Boltzmann constant.

In order to work with only independent variables it is useful to introduce the order
parameters

Y1 =1{%) 2 ={SH) (34)

and the nearest-neighbour two-site correlation functions

y3 = {855y} ys = (S5} ¥5 = (§}57). (3.5

{H'*) can be written in terms of y; ({ = 1,...,5) as
(H*) — 1 J 1 K D! M t 6
N =—5zly3— 52Kys+ D'y + D=D—pu. (3.6)

Analogously the elements of site and pair density matrices {(which turn out to be diagonal)
can be written in terms of y;:

Ps1 = (32 + y1) pa=1-y ps3 = 20n — ) (3.7
and

o1 = 13 + ys + 2y4) Ppo = (33 + 5 — 2y4)
Poz = Ppa = 3(y2 — ¥s + Y1 — Ya) Pp6 = Pps = 352 — Y5 — Y1 + Ya) (3.8)
Ppz = ppr = 5(s — ¥3) Pps =1+y5—2y
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which satisfies the constraints (3.2). The minimization of the free energy with respect to y;

(y=1,...,5) requires the solution of five non-linear algebraic equations
E-J’f-=0 i=1,...,5 (3.9)
i

This system can be solved explicitly for the correlation functions, obtaining [26]

_w(B+R)-2 _wB-R) _o(B+R)+2
B= Y= =Ty (3.10)
where
B =[(2+y)/(2— )" R=1/B V = [2(1 — y2)/{y2 — DI
C =[2(1 — »)/(» + »)V W=2({CC+V)+pCV+o(B+R)+2 a.11)
n=@—1/z e=explB(J—K+D/2)] y=explB(J—K+2D'/D)]
w = exp(28J) B=1/ksT.
In addition the order parameters y, and y, satisfy the equations
- e(V—C)+w(B —R) y2=f(V+C)+w(B+R)+2 G2

W %4

which can be solved numerically by iteration. By insertion of these solutions in (3.6)—(3.8)
and (3.3) and using (2.14), the state equation of the system is determined. From (2.14),
given the values of T and 1T is it possible to determine the chemical potential u and to
draw the IT-y isotherms.

The area per molecule given by ¢ = {A}/N can be determined by the relation [19]

u
=— 3.13
T e, @.13)

or more directly, using the definition (2.8) and (2.1)«(2.5), (3.4) and (3.5), by

o =00{2 — v+ [v— (¥ + )]/} (3.14)

We now have the IT-o isotherms.

The procedure developed here for the CvM pair approximation can be easily extended
in order to achieve a more accurate determination of the free energy [27], e.g. assuming
as maximal cluster a square for a square lattice. In this case, however, the calcuiation is
much more complex and often the results do not change appreciably with respect to those
obtained in the pair approximation, which already takes into account some correlations. We
remember that the CvM when utilized in the site approximation corresponds to the mean-field
approach.
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Figure 1. 11 (mN m~'}-o (A?) isotherms in the cvM (thick lines) and in the mean-field
approximation (thir lines): ——, —— T =289 K; == -, == - T =206 K; — - — —  —,
T=303K, - Lrreaes LT =310 K.

4. Isotherms and order parameters

In the previous section we have identified a procedure to evaluate the IT-o isotherms. Let
us now determine these isotherms having in mind a specific substance: pentadecanoic acid.
For this system, FLBB [18] have proposed the following values for the model parameters:
[ew] = 216 |Aw| = 1565 AE = 500 AS =135
gg =22 v=2 =12

“.1)

(energy parameters are in kg = 1 units, op are in squared &ngstrdms and v and « are
dimensionless).

In order to compare our results with those of FLBB we have performed calculations
for the square lattice using the values (4.1). Figure 1 shows the IT-o isotherms obtained
in the CVM pair approximation (thick lines) and the corresponding isotherms evaluated
in the mean-field treatment of FLEB (thin lines). In both the approximations there is a
break point on each of the isotherms, indicating the LE-LC transition. However, the CVM
pair approach gives different positions of these break points, in better agreement with the
experimental values. For instance, for the isotherm at T = 296 K, the experimental break
point—in units of millinewtons per metre for pressure and squared Angsirdms for molecular
area—is (I1,0) = (5,32) from the results of Winch and Earnshaw (as quoted in [8])
{determined by interpolating the experimental values at T = 295.56 K and at T = 296.66 K)
and (I1,0) = (=~ 5.8,33-34) by using the data reported in [2]. QOur calculations give
(I1,0) = (7.5,33.4), while the results of FLBE indicate that (I1,0) = (2.8,45.6). For
T = 303 K the experimental data coliected in [2] give (TI,o) = (=~ 13.5,28-29), our
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calculations result in (I1,0) = (9.5,32.4) and the mean-field approximation [18] gives
(I, ¢) = (4.1, 42.5),

In order to investigate the characteristics of the LE-LC transition, it is useful to analyse
the behaviour of the order parameter y;. By definition (3.4), y; # O corresponds to the
situation in which one of the two molecular states is more populated and therefore the area
per molecule is smaller as molecules in the same state can partially overlap; in other words
the LC phase is characterized by y) # 0, whereas the LE phase is characterized by y; = 0.
Figure 2 gives y versus I1 for the temperature values in figure 1. As we can observe,
the LE-LC transition is weakly first order according to the more recent experiments [4-7].
Figure 3 shows the behaviour of ya, ¥3, ¥4, ¥5 versus I in the typical case T = 303 K. The
order of the transition is the main difference between our results and those of FLBB [18];
it is first order in our work and second order in their work, This is a further improvement
obtained in the CVM pair approximation with respect to the mean-field treatment.

05
07}

06

041

03

0.2}

0 2 4 6 ] 10 12 14

o

Figure 2. Behaviour of the order parameter y, versus [T (m¥ m™") for the isotherms in figure 1:
— T=280K, e T=2% K, — — T=303K; ... , T =310K.

By using the parameter values (4.1) we have compared our results with some recent
experiments. The data in figure 4 have been extracted from [2] and show the experimental
isotherms of Harkins et al [3], of Pallas and Pethica [4] and of Moore et al 2] at
T = 298.16 K. The dashed line is our result. In figure 5 we give the data of Guyoi-
Sionnest et af [11] at T = 301.66 K and our data (dashed line}. In order to make a more
complete comparison, taking into account that the parameter values (4.1) were proposed by
FLEB on the basis of the experimental data in [28], which, as shown by [2, 4], underestimate
the gas-liquid critical temperature, we have made a pew choice of the parameters, i.e.

lw| = 220 |Aw| = 1580 AE =500 AS =35

(4.2)
gp =21 v=2 o =1.21.
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Figure 4. The cvm 11 (mN m~")— (A2) isotherm
{— ~ =) compared with the data of Harkins et af [3]
(&), of Pallas and Pethica [4] (+) and of Moore ef
al [2] (—), utilizing the parameter values (4.]).

T=298.16 K.

This choice of parameters follows the same criteria utilized by FLBB {18], but now using
the more accurate experimental data given in {2). The remaining arbitrariness is in the
selection of these parameters is useful to obtain good estimates for the break points. We
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i=2

Figure 5. The cvi I1 (mN m~ ') (A?) isotherm (- — -) compared with the data of Guyot-
Sionnest er al [11] (—s—), utilizing the parameter values (4.1), T = 301.66 K.

obtain break points closer to the experimental values as shown in figures 6 and 7 which
correspond to figures 4 and 5, respectively. The global agreement is fairly satisfactory.
Better confirmation of the validity of the model could be obtained from wutilization of the
CVM at a higher level of approximation, which properly includes more correlations.

T T T T

1
1
1
]
1
1
\

1
1

=

Figure 6. As in figure 4, utilizing the parameter values
G (4.2).
5. Concluding remarks

Using the FLBB model, which was proposed to describe the LE-LC transition in amphiphilic
monolayers at the air-water interface, we have determined the surface pressure-melecular
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Figure 7. As in figure 5, utilizing the parameter values (4.2).

area isotherms and found the expected break point at the LE-LC transition. An accurate
analysis of the order parameters introduced in our procedure has shown a weakly first-order
transition agreeing with the more recent experiments. Our investigation has been performed
in the pair approximation of the cvM which allows us to take some comrelations correctly
into account. The good applicability of a generalized mean-fGeld methodology to a two-
dimensional system can be related to the presence in the real system of long-range attractive
interactions, which reduce the upper critical dimension. At the same time the model seems to
possess the basic features to describe the LE-LC transition, as suggested by the improvement
obtained in the CVM pair approximation with respect to the Bragg-Williams approach. The
presence of a first-order transition is the main difference between our results and those of
FLEB. Moreover, for a set of significant temperatures, also the quantitative agreement with
experimental data is improved,

The results obtained here confirm the validity of the FLBB model and encourage further
investigation employing the CvM at a higher level of approximation. Work is in progress
along this line.
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